If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+8u=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| 4s-2s-1s=8 | | -8=s+6 | | 11n-4n-3n-1n-2n=12 | | 17w+-11w=-12 | | -5=-1+a | | 10g-10g+1g+1g=12 | | 3(x+5)=2(^6-x)-2x | | -2(-3x+3)+3x+3=78 | | 10d-9d+d=18 | | 8z+2z-3z+3z=10 | | 45+45+45+6h=30 | | 7x^2+20=18 | | -9(x-2)+6+6x=7x-2(3x+4) | | 10n+-12n-5n=-15 | | -2x+4=-4x+3 | | 4x/3=5/7 | | Y=10x^2-140x-320 | | 11h-2h+-8h-13h=-12 | | (4-x^2)/(x^2+4)^2=0 | | -2x+4=-4x | | 13x+2x-9x=18 | | 3c^2=24c=48 | | 6-2n=1+4(n-5) | | X×1/3x=24 | | 5b+4b-12b+-4b=-10 | | 25^x*5^x^2=625^2 | | 3t-2t+4t+2t+3t=20 | | 3-6x-4=7 | | -2/5x-9=9/10 | | 6=12*a | | 17r+3r-19r-1r+1r=17 | | 12/5=3y |